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ares (i,X(1)) , i =1,2, ..., n . We determine the probability that
the above so-called random graph is connected and then develop a re-
cursive formula for the distribution of C , the number of connected
components it contains. We also derive expressions for the mean

and variance of C .
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A RANDOM GRAPH
. by

Sheldon M. Ross

0. INTRODUCTION AND SUMMARY

Let X(1),X(2), ..., X(n) be independent random variables such that

P{X(i)-j}=Pj,j=1,2, ...,n,ille=l
and consider a graph with n nodes numbered 1,2, ..., n and the
; arcs (i,X(1)) , i =1,2, ..., n . In Section 1 we determine the
probability that the above so-called random graph is connected and then
develop a recursive formula for the distribution of C , the number of
connected components it contains. We also derive expressions for the mean

and variance of C .

The above problem has previously been comsidered in [1], [3], (4],

(5] by a different approach than the one we employ and only for the special

case Pj 1/n . However even in this special case our formula for Var (C)
appears to be new. 1In the final section we show by Schur convexity argu-

ments that the probability of a connected graph is minimized and E(C)

is maximized when Pj s 1l/n .




1. MAIN RESULTS

Before obtaining the desired probability that the graph is connected
we shall consider a related problem having r + 1 nodes - 0,1, ..., r -

and r ares ({i,Y(1)) , i=1,2, ..., r , where the Y

1
and such that P{Y = j} = Q3= 0,1, ooy x, ZQj =1 . We then
0

4 are independent

have the following proposition.

Proposition 1:

In the related problem

P{graph is connected} = Q, -

Proof:

The proof is by induction on r and as it is obvious for r =1
assume the result for all values less than r . Now in the case under
consideration condition on the set of random variables Y(i) which equal

0 to obtain

P{graph is connected}

= z Q(I)sl(l - Qo)!sclP{connected | Y(1) =0,1ie8,¥Y(1)#0,1¢ s€}
Sc{1,2,...,r}

where |S| denotes the cardinality of S and s the complement of S .

Now given that Y(i) =0 for i e S and Y, #0 for i¢ S¢ the situa-

tion (as far as the graph being connected) is the same as if we had

[s€] + 1 nodes and |S®| arcs with each arc going into node 0 with

probability z Qil(l - Qo) . Hence by the induction hypothesis we have
ies !
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$0, 1¢es%) '

P{connected | Y(i) =0, i e S , T,

= ) Q/1-qy
i fes * 0

and so

-
wer

|s| B
[QO (1 -Qp) 1 q

i P{graph is connected} = —= 2 4 f
1-Q0 {

g ol
e i:¥(1)=0 J
1 - Qo

b r
| . [121 Q11¥] 1 if Y =0
= —T—'— where I i =
Q 0 if Y #0

[l e La

Q%

1-4q, !

-Qo 'll

Consider now the original problem with n nodes and arcs (i,X(1i)) ,

i=1,2, ..., n . Starting at some node - say node 1 - consider the

sequence of nodes 1,x(1),x2(1), ... where Xn(l) = x(x“‘l(l)) s and

define N by

N e emallest k : X*(1) ¢ {1,X(1), ..., Xt}

" and define W by




e

N-1

L T R

= o2

In other words N is the number of nodes reached in the sequence
1,X(l),X2(l), ... before a node appears twice and W is the sum of the

probabilities of these nodes. We now have
Theorem 1:
P{graph is connected | W} = W .

Proof:

Conditioning on W and N the problem reduces to the related problem
and the result follows from Proposition 1.

Hence we have

Corollary 1:

P{graph is connected} = E(W) .

In other words if a sequence of independent trials each resulting

1° Pn are

performed then, given that the initial outcome is outcome 1, the expected

in one of n possible outcomes with probabilities P

sum of the probabilities of all the distinct outcomes obtained before any
outcome has been repeated twice is equal to the probability of the graph
being connected. It is interesting to note that as we could have begun
with any of the n outcomes it follows that the expected sum obtained is
independent of the initial outcome; a result which is not all apparent.

Hence if we assume that the initial outcome is also randomly determined

we have that




Corollary 2:

P{graph is connected}

=2Pg[l+ZP+2 B T N AR ) 1 erP +]
£ 491 1 ity 1% g ehtge JE Y

Proof:

The term inside the sum is just P, multiplied by the probability

i

of a type i outcome before any of the other outcomes have occurred

twice.

A graph is said to consist of r connected components if its nodes
can be partitioned into r subsets so that each of the subsets are
connected and there are no arcs between nodes in different subsets. Let
C denote the number of connected components of the random graph

(L.X(2))y , 1 =%, ..., 005 and let

£,(®) = B{C = ) 3 m 12, ciuy B

where we use the notation fj(g) to make explicit the dependence on the

probability vector P = (P, ..., P) . Now
£® = P{C = 1} = P{graph is connected}

can be obtained from Corollary 2. To determine fz(g) , the prob-
ability of exactly 2 components fix attention on some particular
nodie - say node 1. In order that a given set of nodes containing node 1

- call it S - will constitute one connected component and the remaining

c
nodes S a second connected component we must have




€¢2) Xty esS , ftes
(i1) X(i) e s, i e s€
(iii) The nodes in S form a connected subgraph

(iv) The nodes in s¢ form a connected subgraph.

Hence the probability of 2 comnected components is given by

= Sl c
(1) £,(2) =) [( I P )‘S‘ ) P.)“ Isle eesye, @(s®)
2 s \tes 1 (its 4 3 i

where the sum is over all the subsets S containing node 1 and the ith

component of P(S) is equal to Pi/ ) P, 4f 41c S gnd 8 0O If 1 ¢ 8
jes
and similarly for g(sc) . In general the recursive formula for fj(g)

is given by

(2) £.(R) = [( R )is|( 1 2 n-|$]¢ (@(S)E, (g(s"))]
E g [Vzes * 1€s 1) 4 =

where again the sum is over all subsets of {1,2, ..., n} which contain
node 1.

The expected number of connected components can most easily be
computed by first noting that every connected compoment will contain exactly
one cycle. This is most easily seen by noting that a connected component

having r nodes will also have r arcs and thus exactly one cycle. Hence

E(C) = E(Number of Cycles)
1 if nodes in S
(3) =E [:}: I(S)] where I(S) = constitute a cvcle
S

0 otherwise

faet ()

e )




where the sum is over all nonempty subsets of {1,2, ..., n} .

The variance of C can also be obtained by using the same

representation. We obtain
Var (C) = Var [z 1(5)]
S

=) Var [I(S)] + ) ] Cov [I(S),I(S")]
S s,s'
S'#S

Now for S # S' ,

0 1f SnS ¥ ¢
E[I(S)I(S")] ={
E[I(S)]E[I(S')] if S NS' =9

and thus

(4) var (C) = ] E[I(S)]( - E[I(S)]) - § E[I(S)] ]  E[L(S")]

S S S'#S
S'NS#0
Now,
Z I(S') = Number of cycles having a node in S
S'NS#0
and thus

S'NS#0 SU'ES
S'#S

E} J  1(aY)) = R(C) ~ BILI(S)] - E[ A 1(s')]

Hence from (4) we obtain




o i i R R Sy A - A 39 it S -t R i

(5) Var (C) = ] E[I(S)] - [Z 5[1(3)1]2 + )1 < E[I(S)IE(T(s")]
S S S,S'Cs

where

Bl1(s)] = ¢ls] - 1! = p
jes
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2. THE SPECIAL CASE Pj = 1/n

In the special case where Pj = 1/n for all j we have from

Corollary 2 that

P{graph is connected}

n-1
n n

n-1
1+z[ (n - 1)! ]
( b

‘;[l+n-1+(n-1)(n-z)+m+(n-l)!]
n 2

o =k Lt = = 1)ita-
n
~ 1y Bzl
= iE——;ll; Z ni/i! (by letting i =n - j)
n i=0

which agrees with the results given in [1], [3] and [4]. 1In addition

0 1

letting Pn(j) = fj (n’ n ot ;) = P{C = j} the recursive formulae

(1) and (2) become

n-1 k n-k
n - 1\/k n -k
Pn(z) 5 kzl (k - 1)(5) ( n ) Pk(l)Pn—k(l)

and, in general,

n-j+1

4 ") n-1 (k)k(n - k)n-k ;
Gy e L 1) = PP (§ - 1)

Whereas an explicit expression for Pn(j) in terms of Stirling
numbers has been previously derived in (1) the above recursive equations

appears to be new. In this special case the formula (3) for E(C)

simplifies to




v k
E(C) = § (“)(k - 1)!/n

B k=1 k

- which had previously been obtained (see [1] or [5]) in a much more

involved manner. In addition, from (5) we have

2 (a k_[ 2 (n k)
Var (C) = | (k)(k -Dt/m - ] (k)(k - Dt/
k=1 k=1 /

X E (n)(k-lzz “ik

k=1 k nk j=1 n

(n - k) g -1
i 3

which appears to be new.




3. SCHUR FUNCTIONS

We say that the vector P = (P o Pn) majorizes the vector

: X gt
Q=(Q, ..., Q) , written P >Q if
n m
ZP ZQ\J))isl,-..,n—l .
=Lk T =1

Z P

where P(j) and Q(j) are respectively the jth largest values of
Pl’ lelels Pn and Ql’ Ciche Qn
A permutation invariant function H(P) is said to be a Schur convex

function if H(P) > H(Q) whenever P > Q . It is well known (see [2])

>
m

that a sufficient condition for H to be Schur convex is that

20
(P ) BCR) - H(P)| >0
i 2 [ l apz ]

for all P1 - P2 ‘

It is straightforward to verify that the expression presented in

Corollary 2 for the probability that the graph is connected is thus Schur

convex and from Equation (3) that -E(C) is Schur convex. Since every
4 3z
probability vector P = (Pl, ey Pn) majorizes the vector <n’n’ T n)

it follows that the probability that the graph is connected is minimized
and the expected number of components is maximized by the results in the

uniform case.
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